Authors |
Wang, JZ; Ho, SSH; Ma, SX; Cao, JJ; Dai, WT; Liu, SX; Shen, ZX; Huang, RJ ; Wang, GH; Han, YM |
Abstract |
Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds includingn-alkanes (n-C14-n-C40), polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs) and hopanes were quantified in fine particulate (PM2.5), which were collected in urban area of Guangzhou, China in winter and summer in 2012/2013. The pollutants levels were well comparable with the data obtained in previous studies in Pearl River Delta (PRD) region but much lower than most northern Chinese megacities. The contribution of EC to PM2.5and OC/EC ratio suggest that the pollution sources were relatively consistent in GZ between the two seasons. Benzo[a]pyrene (BaP) was the most abundant PAHs, which were 4.9 and 1.0 ng/m3on average, accounting for 10.7% and 9.1% to the total quantified PAHs in winter and summer, respectively. The total concentrations of PAEs ranged from 289.1 to 2435 ng/m3and from 102.4 to 1437 ng/m3, respectively, in winter and summer. Di-n-butyl phthalate (DBP) was the most dominant PAEs. The ambient levels of PAEs could be partly attributed to the widespread uses of the household products, municipal garbage compressing, sewage, and external painting material on the building. Source apportionment for OC with chemical mass balance (CMB) model demonstrated coal combustion, vehicle emission, cooking, and secondary organic compounds (SOC) formation were the four major pollution sources. Both of the indices of n-alkanes and diagnostic PAHs ratios support that anthropogenic sources such as vehicle emission and coal combustion were the significant pollution sources with some extents from epicuticular waxes by terrestrial plants. The ratio of hopanes to EC proved the influences from vehicle emission, and displayed a certain degree of the air aging in the Guangzhou ambient air. |